Letter to the Editor

PRODUCT-DELIVERING LIPOSOMES SPECIFICALLY TARGET HAIR FOLLICLES IN HISTOCULTURED INTACT SKIN

Dear Editor:

There is an important need in finding a way to directly influence hair growth, color and appearance, especially for the treatment of alopecia in humans. The existing approaches are expensive, labor-consuming and relatively short-lasting (surgical transplantation) or relatively low-efficient (the use of different creams and lotions with biologically-active substances).

The use of biologically-active stimulators of hair growth seems to be the more natural and attractive approach, especially at the stage when hair-follicle cells still exist but hair growth, for unknown reasons, is affected. The relatively low efficacy of this approach can possibly be explained by the inability of stimulators to penetrate the cellular membrane of hair-follicle cells and to enter inside cells where their action is needed.

Liposomes, which are artificial phospholipid vesicles can be successfully used for the delivery of different low-molecular-weight water-soluble and oil-soluble compounds into different cells (Gregoriadis, 1978; Schmitz, 1986). At the same time no available data exist on liposome-mediated drug delivery into hair follicle cells. This is probably due to the absence of experimental cultures of appropriate cells or skin samples.

Previously we developed a relatively long-term histoculture (Hoffman, 1991) of whole human and mouse skin, utilizing a collagen-sponge-gel-supported in vitro three-dimensional histoculture system, such that long-term effects of various agents can be studied with regard to toxicity, penetration and hair growth (Li et al., 1991). We have been able to culture both white (Li et al., 1992a) and black mouse skin (Li et al., 1992b) with hair growing for at least 10-16 days respectively, and human scalp tissue with hair follicle cells proliferating for at least 40 days (Li et al., 1992c). We have been able to determine cytotoxicity and viability with fluorescent dyes including dead and living cells, including cells in hair follicles, threedimensionally in the histocultured skin. In the living state, in particular with confocal microscopy (Li et al., 1991). A key aspect of this intact skin histoculture in our system is the presence of the major types of cells, including hair follicles, as well as growing hair. The histoculture model for skin may be an effective replacement for animal systems and superior to the dispersed and reconstituted skin equivalent cell system used previously (Naughten et al., 1989) for measurements of the effect of manufactured products, drugs and pollutants on skin and hair growth.

The use of three-dimensional histoculture in conjunction with confocal microscopy opens the opportunity to follow fine details of product-delivering liposome interactions with hair-follicles at the cellular level. As a result, optimal liposome compositions can be established as well as the conditions for the delivery of the liposomal content into target cells. We describe here the specific affinity of product-delivering liposomes for hair follicles in histocultured skin.

Pieces of shaved outbred white-haired mouse or nude-mouse skin (approx. 2 x 5 x 2 mm) were harvested under a dissection microscope and then histocultured on collagen-gel supported sponge as described earlier (Li et al., 1991). Liposome interaction with the skin was initiated after 24 hours of histoculture.

Liposomes were prepared by sonication of phosphatidylcholine (PC) (25 mg) emulsion in phosphate buffered saline (PBS) containing the fluorescent dye calcine (20 mg/ml). Liposomes were separated from the non-entrapped dye by gel-filtration on a Sepharose 4B column diluted with phosphate buffered saline (PBS). The amount of the entrapped dye was measured spectrophotometrically. Two types of PC were used: egg PC (EPC) and dipalmitoyl PC (DPPC). Due to their phase transition temperatures liposomes made of DPPC are in a gel phase at 37°C while liposomes prepared from EPC are in a liquid-crystalline state.

Mouse skin histocultures were incubated for 2 minutes with liposomes or with a solution of "free" calcine dye at the same concentration as it was in the liposome preparation. After the tissues were thoroughly washed, the specimens were analyzed with an MRC 600 laser confocal microscope with a BHS filter block, which excites the tissue at 488 nm and passes the light emitted at 520. These parameters are close to the excitation and emission maxima reported for calcine (Haugland, 1989). It is also important to note, that there is no autofluorescence of tissue when these emission and excitation wavelengths are used.

Figure 1 A shows the skin histocultures after incubation with liposome-entrapped dye with specific delivery of the dye to the hair follicles. The histocultured skin incubated with free calcine solution exhibits relatively low fluorescence with no preferential staining of any particular skin structure as seen in the confocal micrographs in Figure 1 B. As demonstrated by these images, liposome-entrapped dye in contrast to free dye becomes associated with hair follicles. It is important to note that the image in Figure 1 B was with the same parameters of aperture and gain control as Figure 1 A.

In order to understand whether liposomes are preferentially targeting hair follicles we have used gel-phase liposomes, which are known for their stability in living systems. As seen in Figure 1 C and 1 D these liposomes are associated preferentially with hair follicles evident both when liposomes were labeled with calcine (Figure 1 C) or when the liposomes were fluorescently labeled with NHS-phosphatidylcholine (Haugland, 1989) (Figure 1 D).

Based on the results of the experiments, we conclude: 1) liposomes seem promising as a preferential delivery vehicle to hair...
Fig. 1. A. Mouse skin histocultures treated with calcine-entrapped egg phosphatidylycholine liposomes (liquid-crystalline). Note the high efficiency of the delivery of the green fluorescent dye preferentially into hair follicles. B. Mouse skin histocultures treated with the green fluorescent hydrophilic dye calcine without liposomes which is at the same concentration as was entrapped into the liposomes in Figure 1A (control). Note that the green staining is very weak and there is no preferential delivery of the stain to skin structures. C-D. Mouse skin histocultures treated with fluorescent-labeled gel dipalmitylphosphatidylycholine liposomes. Note the preferential localization of the liposome-associated markers on the surface of hair follicles. C. Calcine-labeled liposomes; D. NBD-phosphatidyethanolamine labeled liposome. Images obtained by confocal scanning laser microscopy. Magnification ×500.

Acknowledgements

This study was supported in part by National Cancer Institute Small Business Innovation Research (SBIR) Grants R43 CA53995-01A1 and R43 CA57072-01.

References


Liang Li
Leonid B. Margolis

AntiCancer Inc. (L. L., V. K. L., R. M. H.)
5325 Metro Street
San Diego, California 92110;

Belozersky Institute of Physico-Chemical Biology (L. B. M.)
Moscow State University
Moscow 119899, Russia; and

Laboratory of Cancer Biology (R. M. H.)
Department of Pediatrics, 0609F
University of California, San Diego
La Jolla, California 92093

(Received 13 July 1992)

1 To whom correspondence should be addressed at Laboratory of Cancer Biology, Department of Pediatrics, 0609F, University of California, San Diego, La Jolla, CA 92093.